Rate of Convergence for Cardy’s Formula

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rate of Convergence of Shepard's Global Interpolation Formula

Given any data points xx,...,x„ in R5 and values f(xx),... ,/(x„) of a function /, Shepard's global interpolation formula reads as follows: s°pf(x) = !/(*,>,(*). "*(*) -I* *,|"7D* xj\", ' j where | ■ | denotes the Euclidean norm in R*. This interpolation scheme is stable, but if p > 1, the gradient of the interpolating function vanishes in all data points. The interpolation operator Sjj is defi...

متن کامل

On the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables

In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.

متن کامل

Pointwise convergence rate for nonlinear

We introduce a new method to obtain pointwise error estimates for vanishing viscosity and nite diierence approximations of scalar conservation laws with piecewise smooth solutions. This method can deal with nitely many shocks with possible collisions. The key ingredient in our approach is an interpolation inequality between the L 1 and Lip +-bounds, which enables us to convert a global result i...

متن کامل

Convergence of the Cotangent Formula: AnOverview

The cotangent formula constitutes an intrinsic discretization of the Laplace– Beltrami operator on polyhedral surfaces in a finite element sense. This note gives an overview of approximation and convergence properties of discrete Laplacians and mean curvature vectors for polyhedral surfaces located in the vicinity of a smooth surface in euclidean 3–space. In particular, we show that mean curvat...

متن کامل

Convergence of the cotan Formula - an Overview

The cotan formula constitutes a discretization of the Laplace-Beltrami operator on polyhedral surfaces in a Finite Element sense. In this note we give an overview over its convergence properties. The mean curvature vector, given by the Laplacian of the embedding of a surface, will serve as a case study: It will be shown that mean curvature viewed as a functional converges, whereas the correspon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2014

ISSN: 0010-3616,1432-0916

DOI: 10.1007/s00220-014-2043-8